PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

One cannot escape the feeling that these mathematical formulas have an independent existence and an intelligence of their own, that they are wiser than we are, wiser even than their discoverers...

By O.P. GUPTA Math Mentor **INDIRA AWARD WINNER**

For detailed solutions, check YouTube Channel.

YouTube.com/MathematiciaByOPGupta

A Multiple Choice Questions, with **only** one correct option.

Q01.	The solutions of the equation $2x - y - 5 = 0$ are:					
	(a) $x = 2, y = -1$	(b) $x = 2, y = 1$	(c) $x = 1, y = -1$	(d) $x = -2, y = 1$		
Q02.	The sum of digits of a two digit number is 9. Also, 9 times this number is twice the number obtained by reversing the order of the digits. The number is:					
	(a) 20	(b) 16	(c) 18	(d) None of these		
Q03.	The system of equations $kx - y = 2$ and $6x - 2y = 3$ has a unique solution when:					
	(a) $k = 0$	(b) $k \neq 0$	(c) $k = 3$	(d) $k \neq 3$		
Q04.	A boat can row 1 km with stream in 10 minutes and 1 km against the stream in 20 minutes. The speed of the boat in still water is:					
	(a) 1.5 km/hr	(b) 3 km/hr	(c) 3.4 km/hr	(d) 4.5 km/hr		
Q05.	A boat goes 24 km upstream and 28 km downstream in 6 hours. It goes 30 km upstream and 21 km downstream in 6 hours and 30 minutes. The speed of the boat in still water is:					
	(a) 4 km/hr	(b) 6 km/hr	(c) 10 km/hr	(d) 14 km/hr		
Q06.	Point (4, 3) lies on the line:					
	(a) $3x + 7y = 27$	(b) $7x + 2y = 47$	(c) $3x + 4y = 24$	(d) $5x - 4y = 1$		
Q07.	The speed of train 150 m long is 50 km/hr. The time it will take to cross a platform 600 m long is:					
	(a) 50 sec	(b) 54 sec	(c) 60 sec	(d) None of these		
Q08.	The graph of an equation $y = -3$ is a line which will be:					
	(a) parallel to x-axis		(b) parallel to y-axi	(b) parallel to y-axis		
	(c) passing through origin		(d) on x-axis			
Q09.	The value of k for which $kx + 2y = 5$ and $3x + y = 1$ have unique solution, is:					
	(a) $k = -1$	(b) $k \neq 6$	(c) $k = 6$	(d) $k = 2$		
Q10.	The graph of the equation $x - y = 0$ is:					
	(a) parallel to x-axis		(b) parallel to y-axis			
	(c) passing through origin		(d) None of these			
Q11.	Five years hence, father's age will be three times the age of his daughter. Five years ago, father was seven times as old as his daughter. Their present ages are:					
MAT	HEMATICIA By O	.P. GUPTA : MCQ in	Mathematics (Class 1	0) 1		

MATHEMATICIA for Class 10

	(a) 20 years, 10 years	S	(b) 40 years, 20 year	S	
	(c) 40 years, 10 years	S	(d) 30 years, 10 years		
Q12.	In a two digit numbe digits interchange the	r, the unit's digit is twi eir places. The number	ice the ten's digit. If 27	is added to the number, the	
	(a) 22	(b) 46	(c) 36	(d) 63	
Q13.	The pair of equations	$3x + 4y = 18, 4x + \frac{16}{3}$	$\frac{6}{2}$ y = 24 has:		
	(a) no solution	5	(b) unique solution		
	(c) infinitely many solutions		(d) can't say		
Q14.	The pair of equations	3x + 2y = 5, $2x - 3y$	= 7 has:		
	(a) no solution	(b) one solution	(c) many solutions	(d) two solutions	
Q15.	If the pair of equation	ns $2x + 3y = 7$, $kx + \frac{9}{2}$	y = 12 have no solutio	n, then value of k is:	
	(a) $\frac{2}{3}$	(b) $\frac{3}{2}$	(c) 3	(d) -3	
Q16.	The equations $x - y$	$= 0.9 \text{ and } \frac{11}{x+y} = 2 \text{ has}$	ave the solution:	Kra I	
	(a) $x = 5, y = 1$	(b) $x = 2.3, y = 3.2$	(c) $x = 3.2, y = 2.3$	(d) $x = 3, y = 2$	
Q17.	If $bx + ay = a^2 + b^2 a$	and $ax - by = 0$ then, the second s	he value of $x - y$ is:	K CD	
	(a) $b-a$	(b) a – b	(c) $a^2 - b^2$	(d) $b^2 + a^2$	
Q18.	218. If $2x + 3y = 0$, $4x - 3y = 0$ then, $x + y$ equals:				
	(a) 0	(b) -1	(c) 1	(d) 2	
Q19.	9. If $\sqrt{ax} - \sqrt{by} = b - a$ and $\sqrt{bx} - \sqrt{ay} = 0$ then, value of $x - y$ is:				
	(a) a + b	(b) a-b	(c) $\sqrt{a} - \sqrt{b}$	(d) $\sqrt{b} - \sqrt{a}$	
Q20.	If $\frac{2}{x} + \frac{3}{y} = 13$ and $\frac{5}{x}$	$-\frac{4}{y} = -2$ then, $x + y = -2$	equals:		
	(a) $\frac{1}{4}$	(b) $-\frac{1}{5}$	(c) $\frac{5}{4}$	$(d) - \frac{5}{4}$	
021	6 If 21	6	6 	6	
Q21.	$11 \ 31x + 43y = 117$ a	na $43x + 31y = 105$ the	en, the value of $x + y_1$	S:	
	(a) –3	(b) $\frac{1}{3}$	(c) $-\frac{1}{3}$	(d) 3	
Q22.	If $19x - 17y = 55$ and	d $17x - 19y = 53$ then,	the value of $x - y$ is:		
	(a) -3	(b) $\frac{1}{3}$	(c) 3	(d) 5	
Q23.	If $\frac{x}{2} + y = 0.8$ and $\frac{x}{x}$	$\frac{7}{\frac{y}{2}} = 10$ then, the value	ue of $x + y$ is:		
	(a) 1	(b) 0.6	(c) –0.8	(d) 0.5	
Q24.	If $(6, k)$ is a solution	of the equation $3x + y$	= 22 then, the value of	f k is:	
	(a) -4	(b) 4	(c) 3	(d) –3	
2		MATHEMATICL	A By O.P. GUPTA : N	MCQ in Mathematics (Class 10)	

Q25.	If $3x - 5y = 1$ and, $\frac{2x}{x - y} = 4$ then, the value of $x + y$ is:					
	(a) 3 (b) -3	(c) $\frac{1}{3}$	$(d) - \frac{1}{3}$			
Q26.	If the pair of equations $2x + 3y = 5$ a value of k is:	nd $10x + 15y = 2k$ repres	ent two coincident lines then, the			
	(a) $-\frac{25}{2}$ (b) -5	(c) $\frac{25}{2}$	$(d) - \frac{5}{2}$			
Q27.	Rs.4900 was divided among a group Rs.25 then, the number of boys in the	p of 150 children. If eacl e group is:	h girl gets Rs.50 and each boy gets			
	(a) 100 (b) 102	(c) 104	(d) 105			
Q28.	Every linear equation in two variable	s has soluti	ion(s).			
	(a) no (b) one	(c) two	(d) infinitely many			
Q29.	$\frac{\mathbf{a}_1}{\mathbf{a}_2} = \frac{\mathbf{b}_1}{\mathbf{b}_2} = \frac{\mathbf{c}_1}{\mathbf{c}_2}$ is the condition for:					
	(a) intersecting lines (b) parallel line	es (c) coincident line	es (d) none of these			
Q30.	For a pair of equation to be consisten	t and dependent, the pair	must have:			
	(a) no solution	(b) unique solution	(b) unique solution			
	(a) infinitely many solutions	(d) none of these	(d) none of these			
Q31.	Graph of every linear equation in two	o variables represents a				
	(a) point (b) straight line	e (c) curve	(d) triangle			
Q32.	Each point on the graph of pair of two lines is a common solution of the lines in case of:					
	(a) infinitely many solutions (b) only one solution					
	(c) no solution	(d) none of these				
Q33.	One of the common solution of $ax + by = c$ and y-axis is:					
	(a) $\left(0, \frac{c}{b}\right)$ (b) $\left(0, \frac{b}{c}\right)$	$(c)\left(\frac{c}{b},0\right)$	(d) $\left(0, -\frac{c}{b}\right)$			
Q34.	If the value of x in the equation $2x - $	8y = 12 is 2 then, the cor	responding value of y will be:			
	(a) -1 (b) 1	(c) 0	(d) 2			
Q35.	The pair of linear equations is said to	be inconsistent if they ha	ive:			
	(a) only one solution	(b) no solution				
	(c) infinitely many solutions	(d) both a and c				
Q36.	On representing $x = a$ and $y = b$ gra	aphically, we get:				
	(a) parallel lines	(b) coincident line	es			
	(c) intersecting lines at (a, b)	(d) intersecting li	nes at (b, a)			
Q37.	How many real solutions of $2x + 3y =$	= 5 are possible?				
	(a) no (b) one	(c) two	(d) infinitely many			
Q38.	The value of k for which the system	of equations $3x + 2v = -$	-5, $x - ky = 2$ has a unique solution.			
X • • • •	is:	1				
	(a) $k = \frac{2}{3}$ (b) $k \neq \frac{2}{3}$	(c) $k = -\frac{2}{3}$	(d) $k \neq -\frac{2}{3}$			

MATHEMATICIA By O.P. GUPTA : MCQ in Mathematics (Class 10)

MATHEMATICIA for Class 10

Q39.	If the lines represented by the pair of linear equations $2x + 5y = 3$, $2(k+2)y + (k+1)x = 2k$ are coincident then, the value of k is:						
	(a) -3	(b) 3	(c) 1	(d) –2			
Q40.	The coordinates of the point where x-axis and the line $\frac{x}{2} + \frac{y}{3} = 1$ intersect, are:						
	(a) (0, 3)	(b) (3, 2)	(c) (2, 0)	(d) (0, 2)			
Q41.	Graphically $x - 2 =$	= 0 represents a line:					
	(a) parallel to x-axis at a distance 2 units from x-axis						
	(b) parallel to y-axis at a distance 2 units from y-axis						
	(c) parallel to x-ax	is at a distance 2 units i	from y-axis				
042	If $a x + b y = c$ and	1 x + m y = n has unio	us solution then the re	lation between the coefficients			
Q 12.	will be of the form		ue serution then the re				
	(a) $a m \neq l b$	(b) $am = lb$	(c) $ab = lm$	(d) $ab \neq lm$			
Q43.	The value of 'a' fo	r which (3, a) lies on 2	x-3y=5:	101			
	(a) $\frac{1}{3}$	(b) 3	$(c) -\frac{1}{3}$	(d) None of these			
Q44.	If $2^{x-y} = 8$ and 2^x	$^{+y} = 64$, then value of x	x and y will be:	1 CORD			
	(a) $\frac{9}{2}, \frac{3}{2}$	(b) $-\frac{9}{2}, \frac{3}{2}$	(c) $\frac{9}{2}, -\frac{3}{2}$	(d) 3, 2			
Q45.	On solving $x - y =$	= 3 and, $x + y = 5$, we l	have value of y as:	\sim			
	(a) 1	(b) 2	(c) 3	(d) 4			
Q46.	The solution of the	The solution of the equations $7x - 2y = 3$ and $11x - 1.5y = 8$ is:					
	(a) $x = 2, y = 1$	(b) $x = 1, y = 2$	(c) $x = -1, y = 2$	(d) None of these			
Q47.	If $3^{x-y} = 9$ and $3^{x+y} = 81$, then value of y is:						
	(a) 1	(b) 2	(c) 3	(d) None of these			
Q48.	If 1 is added in numerator and denominator both, then a fraction changes to 4. If 1 is subtracted from the numerator and denominator both, the fraction changes to 7. Numerator of the fraction is:						
	(a) 2	(b) 3	(c) 7	(d) 15			
Q49.	If system of equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ has infinitely many solutions, then:						
	(a) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	(b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	(c) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} = \frac{c_1}{c_2}$	(d) None of these			
Q50.	The value of y obtained on solving the equations $2x + y = 2x - y = \sqrt{8}$ is:						
	(a) 0	(b) $\frac{1}{4}$	(b) $\frac{1}{2}$	(d) $\frac{3}{4}$			
Q51.	The value of k for which the system of equations $2x + 3y = 5$ and $4x + ky = 10$ has an infinite						
	number of solution	ns, is:					
	(a) 1	(b) 3	(c) 6	(d) 0			
	_						

Q52.	Half the perimeter of a rectangular garden, whose length is 4 m more than its width is 36 m dimensions of the garden are:				
	(a) $l = 20$ m, b = 16 m	n	(b) $l = 16$ m, $b = 20$ m	m	
	(c) $l = 24$ m, $b = 20$ m	n	(d) $l = 30$ m, b = 16 m	n	
Q53.	A system of two sim	ultaneous linear equat	ions in two variables is	inconsistent, if their graphs:	
	(a) are parallel		(b) are coincident		
	(c) intersect at one p	oint	(d) None of these		
Q54.	Ritu can row downst in still water and the	ream 20 km in 2 hours speed of the current re	, and upstream 4 km in 2 hours. Her speed of rowing spectively are:		
	(a) 4 km/h, 4 km/h		(b) 6 km/h, 4 km/h		
	(c) 6 km/h, 6 km/h		(d) 4 km/h, 6 km/h		
Q55.	A boat is rowed dow	nstream at 15.5 km/h a	and upstream at 8.5 km	h. The speed of the stream is:	
	(a) 3.5 km/h	(b) 5.75 km/h	(c) 6.5 km/h	(d) 7 km/h	
Q56.	On solving $3^{x+y} = 81$	and $81^{x-y} = 3$, we ob	oserve that:		
	(a) No solution		(b) $x = 2\frac{1}{2}, y = 1\frac{1}{2}$	0	
	(c) $x = 2, y = 2$	2	(d) $x = 2\frac{1}{8}, y = 1\frac{7}{8}$		
Q57.	The sum of two digit formed exceeds the o	ts of a two digits numb original number by 18.	per is 12. If the digits an The original number i	re reversed, then the number so s:	
	(a) 64	(b) 56	(c) 79	(d) 57	
Q58.	If $\frac{6}{x} + \frac{12}{y} = 7$ and $\frac{2}{x}$	$+\frac{3}{y}=2$ then, the solution	tion is:	\searrow	
	(a) 6, 12	(b) 2, 4	(c) 2, 3	(d) None of these	

		AN	SWEF	Y		
Q01. a	Q02. c	Q03. d	Q04. d	Q05. c	Q06. c	Q07. b
Q08. a	Q09. b	Q10. c	Q11. c	Q12. c	Q13. c	Q14. b
Q15. c	Q16. c	Q17. a	Q18. a	Q19. d	Q20. c	Q21. d
Q22. c	Q23. a	Q24. b	Q25. a	Q26. c	Q27. c	Q28. d
Q29. c	Q30. c	Q31. b	Q32. a	Q33. a	Q34. a	Q35. b
Q36. c	Q37. d	Q38. d	Q39. b	Q40. c	Q41. b	Q42. a
Q43. a	Q44. a	Q45. a	Q46. b	Q47. a	Q48. d	Q49. b
Q50. a	Q51. c	Q52. a	Q53. a	Q54. b	Q55. a	Q56. d
O57. d	O58. c			N.C		

Dear math scholars,

We have taken utmost care while preparing this draft. Still chances of human error can't be ruled out. Please inform us about any Typing error / mistake in this document. This will help many future learners of Mathematics.

Email ID - **iMathematicia@gmail.com** WhatsApp @ +91 9650350480 (only **message**)

O.P. GUPTA, Math Mentor

[Maths (Hons.), E & C Engg., Indira Award Winner]

Follow us on Twitter **@theopgupta** Follow us on Instagram **@theopgupta** Official Website : **www.theOPGupta.com**

YouTube.com/MathematiciaByOPGupta

■ Buy our Books, Test Papers and Sample Papers at **theopgupta.com**

MATHEMATICIA By O.P. GUPTA : MCQ in Mathematics (Class 10)

theopgupta .com OPGUPTA MATHEMATICIA BY O.P. GUPTA

...a name you can bank upon!

To get FREE PDF Materials, join WhatsApp Teachers Group by Clicking on the Logo

If you are a Student, then you may join our Students Group

You can add our WhatsApp no. +919650350480 to your Groups also

Feel Safe to **Share this Document** with other math scholars

